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Planning, Fast and Slow:
A Framework for Adaptive Real-Time Safe Trajectory Planning
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Abstract— Motion planning is an extremely well-studied
problem in the robotics community, yet existing work largely
falls into one of two categories: computationally efficient but
with few if any safety guarantees, or able to give stronger
guarantees but at high computational cost. This work builds on
a recent development called FaSTrack in which a slow offline
computation provides a modular safety guarantee for a faster
online planner. We introduce the notion of ‘“meta-planning”
in which a refined offline computation enables safe switching
between different online planners. This provides autonomous
systems with the ability to adapt motion plans to a priori
unknown environments in real-time as sensor measurements
detect new obstacles, and the flexibility to maneuver differently
in the presence of obstacles than they would in free space, all
while maintaining a strict safety guarantee. We demonstrate the
meta-planning algorithm both in simulation and in hardware
using a small Crazyflie 2.0 quadrotor.

I. INTRODUCTION

The navigation of autonomous dynamical systems through
cluttered environments is a hard problem, particularly when
there is a need for both speed and safety. Often, elements
of the environment (such as obstacle locations) are also
unknown a priori, further complicating the problem. Many
popular methods exist for planning trajectories in such sce-
narios, but a key challenge lies in accounting for dynamic
feasibility in real time while providing a safety guarantee.
Some of the most common approaches in this space are
sampling-based planners such as rapidly-exploring random
trees (RRTs) [1]. Typically, these planners fall into one of
two broad categories: geometric planners only attempt to
find a path the system can take from its current position
to the goal, while kinodynamic planners find a dynamically
feasible trajectory, i.e. a path with associated time stamps
that adheres to some known system dynamics.

Since the output of a geometric planner is not usually
dynamically feasible, a common practice is to apply a
feedback controller, e.g. a linear quadratic regulator (LQR),
to attempt to track a geometric plan. Since the controller will
not follow the plan perfectly, geometric plans are usually
generated by assuming an ad hoc safety margin. This idea
is illustrated in Fig. 1(a-b).

In practice, this safety margin is almost always a conserva-
tive heuristic chosen by the operator. However, the recently-
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Fig. 1: (a) A dynamical system (black, dotted) may not be
able to track the output of a geometric planner (blue, solid),
resulting in collision with an obstacle. (b) Often planners
account for tracking error by heuristically augmenting obsta-
cles; however, the system may still deviate from the planned
path by more than this margin. (c) Schematic of meta-planner
operation using fast (blue, dashed) and slow (red, solid)
planning models with correspondingly large (blue, solid) and
small (red, hatched) TEB-augmented obstacles.

developed Fast and Safe Tracking (FaSTrack) framework
[2] provides a rigorous way to precompute a safety margin
offline, given a model of the true system dynamics and
a (possibly lower-dimensional) model of the online plan-
ner’s dynamics. In the FaSTrack framework, a guaranteed
maximum possible tracking error is computed between the
tracking system model and the planning model. This tracking
error bound (TEB) can also accommodate deviations due
to external disturbances such as wind and time delays. The
TEB is used to expand obstacles by a margin that guarantees



safety. The offline precomputation also provides a computa-
tionally efficient safety controller that maps the relative state
between the tracking system and the planned trajectory at
any given time to the most effective control action for the
tracking system to remain within the TEB. Hence, the online
algorithm involves real-time planning using a fast, potentially
low-dimensional planning model, and quickly computable
robust optimal tracking of the planned trajectory using a
higher-dimensional tracking model.

While FaSTrack makes no significant assumptions about
the specific type of low-dimensional planner, in this work
we focus our attention on geometric planners operating in
the robot’s configuration space. We observe that the resulting
geometric paths can be interpreted as kinematic trajectories
with a fixed maximum speed in each dimension. We empha-
size that the restriction to geometric planners is pedagogical;
like FaSTrack, our proposed meta-planning approach is more
general and extends to more complex planning models.

One key drawback of FaSTrack is that the TEB can be
overly conservative if the system is tracking a particularly
difficult-to-track planning model. In this paper we propose
an extra layer to the core framework that allows com-
bining multiple planning models with different maximum
speeds, and hence different TEBs. We call this process meta-
planning, and it effectively generates a tree of trajectories
that switch between “faster” and “slower” planning mod-
els, as illustrated in Fig. 1(c). Faster planning models are
able to navigate through the environment quickly, but their
larger TEBs prevent them from threading narrow passages
between obstacles. Slower planning models take more time
to traverse the environment, but the correspondingly smaller
TEBs allow them to maneuver more precisely near obstacles.
By adaptively selecting the planning model in real time, our
framework can trade off between speed of navigation and
size of the TEB. Crucially, our meta-planning scheme can
quickly and safely adapt to the presence of obstacles detected
at motion time.

The main contributions of this paper are the aforemen-
tioned real-time meta-planning algorithm for Fast and Safe
Tracking, a constructive proof of safety, and a demonstration
of the full algorithm both in simulation and hardware using
a small quadrotor vehicle.

II. RELATED WORK

Robust motion planning and trajectory optimization have
been active areas of research in recent years. However,
navigation that is both robust and fast is still a challenge.
Sampling-based motion planners can be computationally
efficient, but attempts to make them robust are generally
heuristic. Other techniques for online dynamic navigation
include model predictive control (MPC), which is extremely
useful, particularly for linear systems. MPC is harder to use
in real time for nonlinear systems due to the computational
costs of solving for dynamic trajectories, though work to
speed up computation is ongoing [3, 4]. Robustness can
be achieved in linear systems [5, 6], and there is work
on making MPC for nonlinear systems robust by using

algorithms based on minimax formulations and tube MPCs
that bound output trajectories with a tube around a nominal
path (see [7] for references).

There are other techniques for robust navigation that
take advantage of precomputation. Safety funnels can be
constructed around motion primitives that can then be pieced
together in real time [8]. Given a precomputed nominal
dynamically feasible trajectory, contraction mapping can
be used to make this nominal trajectory more robust to
external disturbances in real time [9]. Finally, Hamilton-
Jacobi (HJ) reachability analysis has been used for offline
robust trajectory planning in fully known environments,
providing guaranteed tracking error bounds under external
disturbances [10].

The meta-planning aspect of this paper was inspired
by behavioral economist Daniel Kahneman’s Nobel Prize
winning work on “fast” (intuitive) and “slow” (deliberative)
modes of cognitive function in the brain [11]. Thinking with
the “fast system” is efficient, but more error-prone. Thinking
with the “slow system” is less error-prone, but slower. The
brain adaptively chooses which mode to be in to operate
efficiently while minimizing error in scenarios where error
can be disastrous. This act of deciding how much cognitive
effort to expend for a given task is called metareasoning [12],
and can be useful for robotics. It may be desirable for a robot
to plan and move swiftly whenever possible, but to operate
more carefully when approaching a challenging region in
the environment. Research in psychology has suggested that
selecting between a limited number of discrete cognitive
modes is computationally advantageous [13], which inspires
the use of discrete set of faster and slower planning models
in our meta-planning algorithm. Our algorithm is able to
trade off planner velocity and tracking conservativeness in
a modular way while providing a strong theoretical safety
guarantee.

III. BACKGROUND

The FaSTrack framework can be used to plan and track a
trajectory online and in real time. The real-time planning is
done using a set of kinematic or dynamic planning models,
and the physical system is represented by a dynamic tracking
model that will attempt to follow the current planning
model. The environment can contain static a priori unknown
obstacles provided they can be observed by the system within
a limited sensing range.! In this section we will define
the tracking and planning models and their relation to one
another, and present a brief overview of FaSTrack.

A. Tracking Model

The tracking model should be a realistic representation of
the real system dynamics, and in general may be nonlinear
and high-dimensional. Let s represent the state variables of

In order to provide safety guarantees, the minimum allowable sensing
distance in any direction is the length of the TEB’s projection onto that
direction, added to the largest distance the current planning reference could
move while a new meta-plan is generated.



the tracking model. The evolution of the dynamics satisfies
the ordinary differential equation (ODE):

d
j :,ézf(s,us,d),te [O7tf]

dt (1)
se€S,us €Us,deD

The trajectories of (1) will be denoted as
Ef(t;s0,t0, us(-),d(+)), where to,t € [0,tf] and to < t.
Under standard technical assumptions [2], these trajectories
will satisfy the initial condition and the ODE (1) almost
everywhere. For a running example we will consider a
tracking model of a simple double-integrator with control
us and disturbances d = [d,, d,]7:

Sz _ Svx — dv
R et ®
B. Planning Model

The planning model defines the class of trajectories gener-
ated by the motion planner. Let p represent the state variables
of the planning model, with control u,. The planning states
p € P are a subset of the tracking states s € S. FaSTrack is
agnostic to the type of planner, as long it can be represented
using a kinematic or dynamic model as follows:

dp . __

= b= h(p,up),t € [0,t5],p € P, up <up <7, (3)
This paper focuses on geometric planners. Although geo-
metric planners may not directly use a dynamical model,
the paths they generate can be described by a point with
direct velocity control. For example, a 1D geometric planner
could be described as a point moving with a direct velocity
controller: p, = wu,. Note that the planning model does
not need a disturbance input. Disturbances need only be
considered in the tracking model and not the planning model,
since the latter only exists in the abstract as a reference for
the former.

C. Relative Dynamics

The FaSTrack framework relies on using the relative
dynamics between the tracking and planning models. The
relative system may be derived by lifting the planner’s state
from P to S and subtracting:

r=s—Qp, 7= g(r, us, up, d) )
@ is matrix that matches the common states of s and p
by augmenting the state space of the planning model. The
relative states r now represent the tracking states relative to
the planning states. Using our tracking and planning model
examples from above we can define the dynamics of a
double-integrator tracking a 1D point mass as:

L)-[wse) s

D. The FaSTrack Framework

The FaSTrack framework, explained in detail in [2],
consists of both an offline precomputation algorithm and an
online planning algorithm. Together, these allow a nonlinear
dynamic system to navigate through an a priori unknown
environment with static obstacles, safely and in real time.

Offline, FaSTrack computes a tracking error bound (TEB)
and a safety controller to stay inside this bound. The TEB is a
safety margin that, when using the safety controller, guaran-
tees robust tracking despite worst-case planner behavior and
bounded disturbances. The safety controller operates on the
relative state between tracker and planner, and is computed
offline via HJ reachability analysis in free space. This is
possible because the relative dynamics do not depend on
the absolute state of the tracking system in the environment.
Since the tracker will always remain inside the TEB, as long
as the TEB never intersects any obstacles, the free space
relative dynamics will always apply.

Online, both at the start and whenever a new obstacle is
sensed, an off-the-shelf planning algorithm—equipped with
the precomputed TEB for collision-checking—generates a
new trajectory. The tracking system may then apply the
precomputed safety controller to track this planned trajectory
in real time.

IV. META-PLANNING
A. General Framework

In this work, we use the term planner to denote the
conjunction of a planning algorithm and an associated plan-
ning model that it uses to generate timed trajectories.This
paper’s main contribution to the FaSTrack framework is the
introduction of a meta-planning algorithm to choose between
a selection of planners {r;}}¥, with different maximum
speeds and hence different TEBs at runtime. We first assume
that planners are sorted in order of decreasing maximum
speed and hence TEB size, and that the overall objective is
to minimize the time to reach a specified goal point. This
objective implies a preference for planners that can move
faster, but also for planners that can safely navigate a more
direct route even if they must do so at lower speed.

The core of the meta-planner is a random tree 7 inspired
by RRT-style sampling-based planners [1], as shown in
Fig. 1.2 The obstacles are shown in black, and are augmented
by the TEBs for two different planners. As in RRT, waypoints
in P are sampled randomly from the environment and
(potentially) connected with their nearest neighbor in 7. If
the fast planner® (with the large blue TEB) finds a collision-
free trajectory, the connection is established (dashed blue
lines). Otherwise, the slow planner (with smaller red striped
TEB and solid red lines) attempts to connect to the nearest
neighbor. Upon success, the waypoint is inserted into 7,
along with the trajectory generated by the planner to reach

2The choice of a tree topology is for convenience; any directed graph
including the robot’s current state would suffice.

3Note that by a faster planner we mean one with a higher associated
maximum velocity, rather than smaller computation time.
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Fig. 2: Invariant set that the double-integrator can remain in

despite worst-case disturbance and planning control for the
both numerical solution (dotted) and analytic solution (solid).

that waypoint from the nearest neighbor, and the associated
safety controller to remain inside the TEB. If a waypoint is
successfully inserted near the goal, a similar process ensues
to attempt to find a trajectory between it and the goal point.

Once a valid “meta-plan” is found from start to goal,
the meta-planner continues building 7 until a user-specified
maximum runtime has elapsed, always retaining the best
(shortest time) sequence of waypoints to the goal. Similar to
Informed RRT* [14], the meta-planner immediately rejects
samples which could not possibly improve upon the best
available trajectory.*

The key to meta-planning lies in ensuring safe switching
between planners. This guarantee requires an offline com-
putation to determine a safety margin for switching into
successively slower planners (with smaller TEBs), as well
as a safe switching control law. Online, we must be sure to
plan with the appropriate safety margin at each step, and to
“backtrack” if we detect the need for a switch to a slower
planner. We will next explore the offline and online steps in
detail.

B. Offline Reachability Analysis

There are two major components to the offline precompu-
tation for the meta-planner. The first step is to compute the
TEB and safety control look-up tables for each planner. This
is done following the standard FaSTrack precomputation
algorithm [2]. Fig. 2 shows the set of relative states in the
z-subsystem that the tracker can remain within despite worst
case planner behavior and external disturbance. The projec-
tion of this controlled invariant set onto the position axis
comprises the x-TEB. For the double-integrator dynamics in
(5), an analytic solution can also be found by applying the
equations of constant-acceleration motion under the worst-
case disturbance and the best associated control effort. The
analytic controlled invariant set, consisting of two parabolic
curves, is superimposed in Fig. 2. Such analytic solutions do
not exist in general.

4In Informed RRT*, planner velocities lie on the sphere leading to an
elliptical geometry for valid samples. Since we assume a maximum speed
in each dimension, valid samples lie in a distorted rhombicuboctahedron.
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Fig. 3: Example of a Dubins car that must leave its tight orbit
in order to eventually move closer to the origin. This example
illustrates why the switching safety bound may generally be
larger than the tracking error bound.

The second major component of the offline precomputa-
tion is to find the corresponding tracking bound and optimal
controller for transitioning between planners. For the dynam-
ics in (5), switching from a planner with a small TEB to one
with a large TEB is safe by construction, because the large
TEB contains the small TEB. Switching from a large TEB
to a small one is more complicated.

To transition from a large TEB to a small TEB we must
ensure that the relative state between the autonomous system
and the planned path is within the small TEB by the time of
the planner switch. FaSTrack provides the optimal control for
staying within each bound individually, but does not provide
the controller and bound required for reducing the tracking
error prior to a switch. Perhaps surprisingly, in general the
tracker may first need to exit the large TEB before converging
to the small TEB. Fig. 3 provides an intuitive example of
this phenomenon. Here, a Dubins car moving at a fixed
speed remains within radius R of the origin by turning at
its maximum steering angle. In order for the car to reduce
its distance to the origin, it must first exit the original circle
to reorient itself towards the origin. In general we must
precompute the set of states that the system may visit when
transitioning from a large TEB to a small TEB, and the
optimal control to achieve this transition. To do this we use
HJ reachability analysis.

HJ reachability analysis provides a rigorous mechanism
for analyzing the goal satisfaction of a system, and can be
used to determine the backward reachable tube (BRT). The
BRT is the set of all allowable initial states of a system such
that it can enter a set of goal states within a given time
interval. HJ reachability analysis can also be used in the
context of differential pursuit-evasion games [15, 16]. Here,
as in FaSTrack [2], we assume there is such a game between
the tracking system and the planning system. In this game,
the tracking system will try to “capture” the planning system,
while the planning system is attempting to avoid capture.
In practice, the planner is not actively trying to avoid the
tracker, but this assumption accounts for unexpected, worst-
case planner behavior. We want to determine the set of states
that the tracking system may visit when transitioning from
the larger TEB to the smaller TEB.

Before constructing the differential game we must first
determine its information structure, i.e. how and when each
player makes decisions. Since the relative dynamics between
the tracker and planner are decoupled in their respective
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Fig. 4: Visualizations of the z-subsystem’s numerical (left)
and analytic (right) controlled invariant sets for two dif-
ferent planners. The numerical SSB is guaranteed to over-
approximate the minimal SSB.

inputs, and we assume an additive disturbance, it is in fact
irrelevant who “plays first” at each time instant, and the value
of the game is well defined under feedback strategies.

For the system in the form of (4), we would like to com-
pute the BRT of time horizon 7', denoted R(T"). Intuitively,
R(T) is the set of states from which there exists a control
strategy to drive the system into a target set £ within a
duration of 1" despite worst-case disturbances. Formally, the
BRT is defined here as

R(T) = {r: Jus(-) € Uy, Yu,(-) € Uy, Vd(-) € D,
r(-) satisfies (4), (6)
At e [tg — T, to], C(t;7, Lo, us(-),d()) € L}

where U,,U,, D denote the sets of feedback strategies for
the tracker, planner and disturbance.

Standard HJ formulations exist for computing the BRT
in general [17-20], and more efficiently for decomposable
systems [21]. Here the target £ is the set of states represented
by the smaller tracking error bound. Using the relative
dynamics between the tracking model and the planning
model associated with the smaller TEB, we evolve this set
backwards in time. We stop the computation when the tube
contains the set of states associated with the larger TEB.
This BRT represents the set of states from which the system
can enter the small TEB, as well as the states that the
trajectories may enter along the way. By projecting this set
onto the position dimensions we obtain a switching safety
bound (SSB). We note that this is an over-approximation
of the minimal SSB because it includes trajectories that do
not originate inside the larger TEB’s controlled invariant
set. The SSB precomputation also generates the switching
controller. Continuing our double-integrator example, Fig. 4a
shows the controlled invariant sets associated with the larger
and smaller TEBs, and the over-approximated set associate
with the SSB. The same information computed analytically is
shown in Fig. 4b, where the minimal SSB may be computed
exactly.

C. Online Meta-Planning

At runtime, the meta-planner is in charge of constructing
and maintaining a tree, 7, of waypoints connected via
trajectories generated by the set of available planners. It is
also responsible for re-planning whenever new information
about the environment becomes available, i.e. when obstacles
are detected.

The precomputed safety sets allow the meta-planner to
reason quickly about dynamic tracking feasibility as it
builds 7. Using the precomputed TEBs, the meta-planner
can determine which planners are safe to use in different
regions of the environment. In addition, the SSBs allow the
meta-planner to determine the validity of planner-to-planner
transitions. The meta-planner’s logic is detailed below and
illustrated in Fig. 5.

Step 0: Root. The root node of 7 is initially set at the
starting position of the tracking system. Since the system
has an initial tracking error equal to zero, it is by definition
inside of all the available TEBs. Later, if an obstacle has
just been detected mid-trajectory, the new root node will be
placed at the predicted position of the planning system after
some allowed computation time (typically < 1 s) and the
tracking system will only be guaranteed to be inside the
TEB associated to the current edge of 7.

Step 1: Sample. The meta-planner constructs its tree 7 by
sequentially sampling points uniformly at random from the
environment and attempting to connect them to the nearest
existing waypoint in the tree.

Step 2: Plan. By default, the meta-planner always tries to
connect waypoints using the fastest planner 71, which is also
associated to the largest TEB. If m; does not find a collision-
free trajectory, the meta-planner then attempts to use the
second-fastest planner ms, which has a smaller TEB. The
meta-planner continues trying available planners in order of
decreasing TEB size until one succeeds or all have failed (in
which case it abandons this candidate waypoint and samples
a new one).

Step 3: Virtual Backtrack. When a planner 75 succeeds
in reaching a new point p from the nearest waypoint w € T,
the meta-planner checks what planner was previously used
to reach waypoint w from its parent v € 7. If this preceding
planner 7; had a larger TEB than the new planner (that is, if
j < k), then p cannot be immediately added to 7. Instead,
the meta-planner first needs to ensure that the tracking system
will be able to safely transition into TEBj before reaching
w, so that it can then track 7;’s plan from w to p while
remaining inside its TEB. The meta-planner does this is by
checking what planner 7; was used to reach w’s parent v, and
if 7 < k, using the safe switching bound SSB;_, ;. to collision-
check the already-computed path v — w. If ¢ > k, there is
no need to use a SSB and the path v — w is guaranteed to
be safe under TEBy, since it was already deemed safe under
the larger TEB; by 7;.

If the check is successful, this means that, instead of
getting from v to w tracking the faster planner 7;, the system
can follow an alternative trajectory, skipping 7; altogether
and transitioning from the speed of m; to the speed of my.
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Fig. 5: Illustration of the online meta-planning algorithm.

This path is added to 7 as an alternative to the original
v — w path: the more-slowly-reached w is a new node in
T, and p is added to T as a child of this new node.

If the check is unsuccessful, the meta-planner does not
add p to the tree. Two different options for handling this
possibility are as follows:

a) Discard: p is discarded and the meta-planner moves on
to sample a new candidate point.

b) Recursive Virtual Backtrack: the meta-planner marks
v as a waypoint that needs to be reached from its parent
using a slower planner than the original 7;, so that safe
transition into TEB;, will be possible. This will always
be the case if v is reached using 7;, since v — w is safe
under TEB; C TEB;. Step 3 can then be repeated on v,
and recursively applied (at worst) until the root of 7.

One alternative option for handling planner-switching fail-
ures is to prevent them altogether by always using SSBs
instead of TEBs for the planning in Step 2. In particular,
replacing TEB; with SSB;_,n will ensure that planners
will only attempt to add a candidate point p to the tree
if it would not only be possible to reach p under this
planner but also, if later deemed necessary, to do so while
transitioning to the smallest TEB (so that subsequent nodes
can be connected to it by any planner without the need
for the backtracking verification in Step 3). The additional
conservativeness introduced by this substitution depends on
the relative tracker-planner dynamics, namely on how much
larger SSB;_, x is than TEB;.

Remark 1: In the case of a point-mass tracking model
following a kinematic planner, we have SSB;_,; = TEB,,
Vj > 14, and therefore this substitution does not need to
be done explicitly nor does it introduce any additional
conservativeness. The backtracking check in Step 3 is always
guaranteed to succeed.

Proposition 1: Any plan generated by the meta-planner
algorithm can be safely followed by the tracking system.
Proof: The proof is by construction of the meta-planner,
based on FaSTrack guarantees; we provide an outline here.
A point is only added to the meta-planning tree if there
exists a sequence of planned trajectories that reach the point
such that (a) each planned trajectory can be tracked by the
system with an error bounded by the associated TEB, and is
clear of known obstacles by at least TEB, (b) each transition

between planners can be followed by the system with an
error bounded by the corresponding SSB, and is clear of
known obstacles by at least SSB, and (c) if new obstacles are
detected, re-planning succeeds (at worst, a geometric planner
can always reverse or stop) in time for the system to switch
to the new plan before colliding. [ ]

V. RESULTS

We demonstrate our algorithm on a 6D near-hover quadro-
tor model tracking a suite of 3D geometric planners running
BIT* [22] in the cluttered environment depicted in Fig. 6
with different maximum speeds in each dimension. The
tracking® and planning models (for the i planner 7;) are
given below in Eq. 7 (tracker at left, planner at right):

éz Svx — d'uz

e el

Svx - gtand — dgqy | Py - b%i) 0
Svy —gtan¢ — day Pz b

Svz T— g — daz

Here us = [0,¢,T]7 and correspond to roll, pitch, and
thrust. In all experiments, we set —0.15 rad < [0,¢] <
0.15 rad and 7.81 m/s> < T < 11.81 m/s? Planner
m;’s controls are u, = [bg),b(yz),b(;)}, each representing a
fixed maximum speed in the given dimension. Due to the
form of (7), the optimal safety controller will be bang-bang.
However, it is only critical to apply the safety control at the
boundary of the TEB. A smooth linear controller may be
used in the interior, following a least-restrictive supervisory
control law. The relative dynamics between the tracking and
planning models are:

’f‘x Svx — dvz - b<zZ)

7:111 Svy — doy — bz(j)

,Tz = Svz — dvz - b(zl) (8)
Tvz gtan® — dag

Ty —gtan ¢ — day

Tz T - g - daz

Equation (8) can be split into three 2D subsystems with
states (z,v;), (y,vy), and (z,v,) that are of the same form
as the double-integrator example from Section IV-B. Note
that the dynamics of the (z,v,) and (y, v,) subsystems are
identical, and thus can be solved once and applied to each
subsystem. By using decomposable HJ reachability [21] we
compute the (z,v,) set in 2 min 15 s and the (z,v,) set in
2 min, for a total of a 4 min 15 s precomputation time. Fig. 7
shows the growth of TEB,, in each subsystem’s position state
as the planner speed in that dimension increases. Moreover,
as explained in Section IV-B, the TEB for m; is identical to
the SSB for switching from m; — m;,7 > 1.

A. Simulation

We implemented the meta-planning online algorithm
within the robot operating system (ROS) [23] framework. We
used the BIT* [22] geometric planner from the Open Motion

SNote that we have assumed a zero yaw angle for the quadrotor. This
is enforced in practice by using a strict feedback controller on yaw rate to
regulate yaw to zero.
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Fig. 6: Simulated autonomous flight in a cluttered environment. Notice that when using LQR control the quadrotor leaves the
TEB, but under optimal safety control it remains within the TEB. This is particularly important in the vicinity of obstacles.
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Planning Library (OMPL) [24]. Code is written in C++ and
is available as an open source ROS package.® Meta-planning
typically runs in well under one second in a moderately
cluttered environment.

Fig. 6 shows a snapshot of a simulated autonomous
quadrotor flight in an artificial environment with spherical
obstacles using trajectories generated by our algorithm. Ini-
tially, the obstacle locations and sizes are unknown to the
quadrotor, but as soon as they come within the sensing radius
(the size of which must adhere to the constraint discussed
in Section III) they are added to the meta-planner’s internal
environment model and used during re-planning.

In Fig. 6a we show what happens when the tracking
controller is a standard LQR controller, while in Fig. 6b
everything remains the same except that we apply the optimal
controllers derived from the offline analysis in Section IV-
B. Note that the LQR controller makes no guarantee about
staying within the TEB, and hence it is unable to remain
inside the TEB in the vicinity of the obstacle. The optimal
controller, conversely, is guaranteed to remain in the TEB.

Shttps://github.com/HJReachability/meta_fastrack

B. Hardware Demonstration

We replicated the simulation on a hardware testbed using
the Crazyflie 2.0 open source quadrotor platform, shown in
Fig. 8. We obtained position and orientation measurements at
~ 235 Hz from an OptiTrack infrared motion capture system.
Given state estimates, we send control signals over a radio
to the quadrotor at 100 Hz. As shown in our accompanying
video,” the quadrotor successfully avoids the obstacles while
remaining inside the TEB for each planner the meta-plan.

Fig. 9 shows the quadrotor’s position over time recorded
during a hardware demonstration. Note that the quadrotor
stays well within the TEB throughout the flight even when
the TEB changes size during planner switches.

Fig. 8: A Crazyflie 2.0 flying during our hardware demonstra-
tion. Two OptiTrack cameras are visible in the background.

VI. CONCLUSIONS

We have proposed a novel meta-planning algorithm for
using FaSTrack with multiple planners. The algorithm adap-
tively selects the fastest-moving planner that finds locally
collision-free paths, and guarantees safe online transitions
between these planners. The resulting meta-plans use more

Thttps://youtu.be/1PdXtR8Ar-E
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Fig. 9: Position vs. time during a hardware demonstration.

aggressive, faster-moving planners in open areas and more
cautious, slower-moving planners near obstacles. We demon-
strate meta-planning in simulation and in a hardware demon-
stration, using a quadrotor to track piecewise-linear trajecto-
ries at different top speeds.

The theory we develop here is general and can be applied
to a wide variety of systems, including manipulators and
other mobile robots. However, computing the TEB and
SSB using HJ reachability can be challenging for these
high-dimensional coupled systems. Ongoing work seeks to
alleviate this challenge using other methods of computation
such as sum of squares programming and neural network
function approximators. Other promising directions include
incorporating time-varying obstacle avoidance, further inte-
gration with OMPL and other planning libraries, providing
adaptable error bounds based on external disturbances, and
updating the tracking error bound online based on learned
information about the tracking model.
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